lunes, 10 de diciembre de 2012

La importancia de las TIC en la Astronomía


Es criterio generalizado que la astronomía es la madre de todas las ciencias. De hecho, la humanidad antigua, los componentes primigenios de la especie humana, hicieron uso utilitario de dos áreas del conocimiento humano, desde donde se desprendieron todas las demás disciplinas. Esas dos disciplinas fueron la astronomía y la matemática.
Considero que la astronomía ha influenciado de manera sustancial el desarrollo de tecnología, a sumo grado.
El primero de ellos, el desarrollo de supercomputadoras. Los astrofísicos han logrado enlazar computadoras con altas capacidades hasta constituirlos en supercomputadores. El objetivo de confeccionar tales “monstruos” informáticos es poder simular las condiciones básicas del Universo primigenio y desentrañar la forma y figura que presenta el mismo en la actualidad.
Poder representar los efectos de la materia y la energía oscura requiere de Terabytes de información y velocidades, hasta ahora inimaginables, para las computadoras normales.
Los físicos buscan las claves del origen del Universo. Algunas incógnitas permanecen sin poder ser enlazadas y para ello, varios países se reunieron en un esfuerzo notable y han confeccionado el “Gran Colisionador de Hadrones” (LHC, por sus siglas en inglés) buscando un escurridizo bosón, el de Higgs, que no sólo terminaría de explicar algunas cuestiones básicas, sino que abriría las puertas para la búsqueda de un nuevo tipo de energía, casi inagotable para nosotros, lo que se constituiría en la energía del futuro para nosotros.
El desarrollo de sensores ultrasensibles y cámaras de alta resolución para la búsqueda de minerales en los planetas y lunas del Sistema Solar y detección de ondas en varias longitudes de onda, ha permitido el desarrollo de una gran cantidad de instrumentos, no sólo para la medicina, sino para cualquier disciplina técnica, acá en la Tierra. Las técnicas de tomografía, radiología digital y resonancia magnética, se deben en gran parte al trabajo de científicos vinculados al quehacer astronómico.




Las técnicas de transmisión de señal, detección de errores y reconstrucción de señal, tan útiles en nuestras operaciones cotidianas (TV, telecajeros, entre otros), fueron desarrolladas para poder recibir información desde el confín del Sistema Solar, con las primeras sondas interplanetarias Voyager y Pioneer.
La confección y desarrollo de circuitos electrónicos ultra-resistentes se debe a la astronáutica, ya que los componentes deben funcionar de manera adecuada en el agreste clima espacial, donde están expuestos a grandes cantidades de radiación.
La Astronomía, ha sabido valerse de si misma durante años; pero siempre ha tenido una aliada que impulsó sus descubrimientos a corto y a largo plazo; El desarrollo de las TIC.

Alfa Centauri


Alfa Centauri es el sistema estelar más cercano al Sol que está a unos 41,3 billones de km de distancia. Considerada desde la antigüedad como una única estrella y con gran importancia mitológica (Mitología) (Centauro), la más brillante de la constelación del Centauro, lo que se observa sin ayuda de telescopio es, en realidad, la superposición de dos estrellas brillantes de un posible sistema de tres. Fue el astrónomo francés Nicolas Louis de Lacaille quien en 1752 descubrió que Alfa Centauri es una estrella binaria. Está a 4,36 años luz de la Tierra.
El sistema también contiene por lo menos un planeta del tamaño terrestre Alpha Centauri Bb, con cerca de 113% de la masa terrestre, que orbita Alpha Centauri B, con un período de 3,236 días, lo que lo hace ser el exoplaneta más cercano conocido a la Tierra. Orbitando a una distancia de 6 millones de kilómetros de la estrella, o el 4% de la distancia de la Tierra al Sol, el planeta tiene una temperatura superficial estimada de al menos 1500 K (aproximadamente 1200 C), demasiado caliente para ser habitable.


¿En qué consiste la Astronáutica?


La astronáutica se define como la teoría y práctica de la navegación fuera de la atmósfera de la Tierra por parte de objetos artificiales, tripulados o no, es decir, el estudio de las trayectorias, navegación, exploración y supervivencia humana en el espacio. Abarca tanto la construcción de los vehículos espaciales como el diseño de los lanzadores que habrán de ponerlos en órbita.
Se trata de una rama amplia y de gran complejidad debido a las condiciones difíciles bajo las que deben funcionar los aparatos que se diseñen. En la actualidad, la exploración espacial se ha mostrado como una disciplina de bastante utilidad, en la cual están participando cada vez más países.
En términos generales, los campos propios de la astronáutica, y en la que colaboran las diversas especialidades científicas y tecnológicas (astronomía, matemática, física, cohetería, robótica, electrónica, computación, bioingeniería, medicina, ciencia de materiales, etc.) son:
1º El diseño de los ingenios espaciales ("naves" en términos generales), así como los materiales con que serán construidas.
2º La investigación en sistemas de propulsión y aplicación de los propulsantes que posibiliten el despegue y la navegación de los aparatos espaciales.



3º El cálculo de las velocidades y trayectorias de despegue, navegación, acople y reingreso de los aparatos, sea en relación a la Tierra o a otros cuerpos celestes, así como las técnicas a utilizar en las mismas.
4º La supervivencia de los seres humanos en el espacio, sea en el interior de las naves o fuera de ellas.
5º Las técnicas de comunicación de las naves con la Tierra o entre ellas en el espacio exterior.
6º La técnicas de exploración y colonización del espacio y de los cuerpos celestes.
La astronáutica, en combinación con la astronomía y la astrofísica, ha dado origen o potenciado a nuevas disciplinas científicas: astrodinámica, astrofotografía, telemetría espacial, astrogeofísica, astroquímica, astrometeorología, etc.

¿Qué es la cosmología física?


La cosmología física, es la rama de la astrofísica, que estudia la estructura a gran escala y la dinámica del Universo. En particular, trata de responder las preguntas acerca del origen, la evolución y el destino del Universo.



La cosmología física, tal y como se comprende actualmente, comienza en el siglo XX con el desarrollo de la Teoría general de la relatividad de Albert Einstein y la mejora en las observaciones astronómicas de objetos extremadamente distantes. Estos avances hicieron posible pasar de la especulación a la búsqueda científica de los orígenes del universo y permitió a los científicos establecer la Teoría del Big Bang que se ha convertido en el modelo estándar mayoritariamente aceptado por los cosmólogos debido a el amplio rango de fenómenos que abarca y a las evidencias observacionales que lo apoyan, aunque todavía existe una minoría de investigadores que presenten otros puntos de vista basados en alguno de los modelos cosmológicos alternativos.
La cosmología física trata de entender las grandes estructuras del universo en el presente (galaxias,agrupaciones galácticas y supercúmulos), utilizar los objetos más distantes y energéticos (cuásares, supernovas y GRBs) para entender la evolución del universo y estudiar los fenómenos ocurridos en el universo primigenio cerca de la singularidad inicial (inflación cósmica, nucleosíntesis primordial y Radiación de fondo de microondas).

viernes, 7 de diciembre de 2012

Cosmología


La cosmología en rasgos generales estudia la historia del universo desde su nacimiento. Hay numerosos campos de estudio de esta rama de la astronomía. Varias investigaciones conforman la cosmología actual, con sus postulados, hipótesis e incógnitas.



La cosmología física comprende el estudio del origen, la evolución y el destino del Universo utilizando los modelos terrenos de la física. La cosmología física se desarrolló como ciencia durante la primera mitad del siglo XX como consecuencia de diversos acontecimientos y descubrimientos encadenados durante dicho período.

Principio cosmológico
Constante cosmológica

Astronomía cercana y lejana


La astronomía cercana abarca la exploración de nuestra galaxia, por tanto comprende también la exploración del Sistema Solar. No obstante, el estudio de las estrellas determina si éstas pertenecen o no a nuestra galaxia. El estudio de su clasificación estelar determinará, entre otras variables, si el objeto celeste estudiado es "cercano" o "lejano".
Tal como hemos visto hasta ahora, en el Sistema Solar encontramos diversos objetos (v. El Sistema Solar desde la astronomía) y nuestro sistema solar forma parte de una galaxia que es la Vía Láctea. Nuestra galaxia se compone de miles de millones de objetos celestes que giran en espiral desde un centro muy denso donde se mezclan varios tipos de estrellas, otros sistemas solares, nubes interestelares o nebulosas, etc. y encontramos objetos como IK Pegasi, Tau Ceti o Gliese 581 que son soles cada uno con determinadas propiedades diferentes.
La estrella más cercana a nuestro sistema solar es Próxima Centauri que se encuentra a 4,2 años luz. Esto significa que la luz procedente de dicha estrella tarda 4,2 años en llegar a ser percibida en La Tierra desde que es emitida.
Estos soles o estrellas forman parte de numerosas constelaciones que son formadas por estrellas fijas aunque la diferencia de sus velocidades de deriva dentro de nuestra galaxia les haga variar sus posiciones levemente a lo largo del tiempo, por ejemplo la Estrella Polar. Estas estrellas fijas pueden ser o no de nuestra galaxia.



La astronomía lejana comprende el estudio de los objetos visibles fuera de nuestra galaxia, donde encontramos otras galaxias que contienen, como la nuestra, miles de millones de estrellas a su vez. Las galaxias pueden no ser visibles dependiendo de si su centro de gravedad absorbe la materia (v. agujero negro), son demasiado pequeñas o simplemente son galaxias oscuras cuya materia no tiene luminosidad. Las galaxias a su vez derivan alejándose unas de otras cada vez más, lo que apoya la hipótesis de que nuestro universo actualmente se expande.
Las galaxias más cercanas a la nuestra (aproximadamente 30) son denominadas el grupo local. Entre estas galaxias se encuentran algunas muy grandes como Andrómeda, nuestra Vía Láctea y la Galaxia del Triángulo.
Cada galaxia tiene propiedades diferentes, predomino de diferentes elementos químicos y formas (espirales, elípticas, irregulares, anulares, lenticulares, en forma de remolino, o incluso con forma espiral barrada entre otras más sofisticadas como cigarros, girasoles, sombreros, etc.).

Astronomía de los fenómenos gravitatorios


El campo gravitatorio del Sol es el responsable de que los planetas giren en torno a este. El influjo de los campos gravitatorios de las estrellas dentro de una galaxia se denomina marea galáctica.
Tal como demostró Einstein en su obra Relatividad general, la gravedad deforma la geometría del espacio-tiempo, es decir, la masa gravitacional de los cuerpos celestes deforma el espacio, que se curva. Este efecto provoca distorsiones en las observaciones del cielo por efecto de los campos gravitatorios, haciendo que se observen juntas galaxias que están muy lejos unas de otras. Esto es debido a que existe materia que no podemos ver que altera la gravedad. A estas masas se las denominó materia oscura.



Encontrar materia oscura no es fácil ya que no brilla ni refleja la luz, así que los astrónomos se apoyan en la gravedad, que puede curvar la luz de estrellas distantes cuando hay suficiente masa presente, muy parecido a cómo una lente distorsiona una imagen tras ella, de ahí el término lente gravitacional o anillo de Einstein. Gracias a las leyes de la física, conocer cuánta luz se curva dice a los astrónomos cuánta masa hay. Cartografiando las huellas de la gravedad, se pueden crear imágenes de cómo está distribuida la materia oscura en un determinado lugar del espacio. A veces se presentan anomalías gravitatorias que impiden realizar estos estudios con exactitud, como las ondas gravitacionales provocadas por objetos masivos muy acelerados.
Los agujeros negros son singularidades de alta concentración de masa que curva el espacio, cuando éstas acumulaciones masivas son producidas por estrellas le les denomina agujero negro estelar; esta curva espacial es tan pronunciada que todo lo que se acerca a su perímetro es absorbido por este, incluso la luz (de ahí el nombre). El agujero negro Q0906+6930 es uno de los más masivos de los observados. Varios modelos teóricos, como por ejemplo el agujero negro de Schwarzschild, aportan soluciones a los planteamientos de Einstein.

Astronomía de rayos gamma


Los rayos gamma son radiaciones emitidas por objetos celestes que se encuentran en un proceso energético extremadamente violento. Algunos astros despiden brotes de rayos gamma o también llamados BRGs. Se trata de los fenómenos físicos más luminosos del universo produciendo una gran cantidad de energía en haces breves de rayos que pueden durar desde unos segundos hasta unas pocas horas. La explicación de estos fenómenos es aún objeto de controversia.
Los fenómenos emisores de rayos gamma son frecuentemente explosiones de supernovas, su estudio también intenta clarificar el origen de la primera explosión del universo o big bang.
El Observatorio de Rayos Gamma Compton -ya inexistente- fue el segundo de los llamados grandes observatorios espaciales (detrás del telescopio espacial Hubble) y fue el primer observatorio a gran escala de estos fenómenos. Ha sido reemplazado recientemente por el satélite Fermi. El observatorio orbital INTEGRAL observa el cielo en el rango de los rayos gamma blandos o rayos X duros.
A energías por encima de unas decenas de GeV, los rayos gamma sólo se pueden observar desde el suelo usando los llamados telescopios Cherenkov como MAGIC. A estas energías el universo también puede estudiarse usando partículas distintas a los fotones, tales como los rayos cósmicos o los neutrinos. Es el campo conocido como Física de Astropartículas.



miércoles, 28 de noviembre de 2012

Astronomía ultravioleta


La astronomía ultravioleta basa su actividad en la detección y estudio de la radiación ultravioleta que emiten los cuerpos celestes. Este campo de estudio cubre todos los campos de la astronomía. Las observaciones realizadas mediante este método son muy precisas y han realizado avances significativos en cuanto al descubrimiento de la composición de la materia interestelar e intergaláctica, el de la periferia de las estrellas, la evolución en las interacciones de los sistemas de estrellas dobles y las propiedades físicas de los quásares y de otros sistemas estelares activos. En las observaciones realizadas con el satélite artificial Explorador Internacional Ultravioleta, los estudiosos descubrieron que la Vía Láctea está envuelta por un aura de gas con elevada temperatura. Este aparato midió asimismo el espectro ultravioleta de una supernova que nació en la Gran Nube de Magallanes en 1987. Este espectro fue usado por primera vez para observar a la estrella precursora de una supernova.


La Astronomía del espectro electromagnético


Se han aplicado diversos conocimientos de la física, las matemáticas y de la química a la astronomía. Estos avances han permitido observar las estrellas con muy diversos métodos. La información es recibida principalmente de la detección y el análisis de la radiación electromagnética (luz, infrarrojos, ondas de radio), pero también se puede obtener información de los rayos cósmicos, neutrinos y meteoros.
Estos datos ofrecen información muy importante sobre los astros, su composición química, temperatura, velocidad en el espacio, movimiento propio, distancia desde la Tierra y pueden plantear hipótesis sobre su formación, desarrollo estelar y fin.
El análisis desde la Tierra de las radiaciones (infrarrojos, rayos x, rayos gamma, etc.) no sólo resulta obstaculizado por la absorción atmosférica, sino que el problema principal, vigente también en el vacío, consiste en distinguir la señal recogida del "ruido de fondo", es decir, de la enorme emisión infrarroja producida por la Tierra o por los propios instrumentos. Cualquier objeto que no se halle a 0 K (-273,15 °C) emite señales electromagnéticas y, por ello, todo lo que rodea a los instrumentos produce radiaciones de "fondo". Hasta los propios telescopios irradian señales. Realizar una termografía de un cuerpo celeste sin medir el calor al que se halla sometido el instrumento resulta muy difícil: además de utilizar película fotográfica especial, los instrumentos son sometidos a una refrigeración continua con helio o hidrógeno líquido.



La radioastronomía se basa en la observación por medio de los radiotelescopios, unos instrumentos con forma de antena que recogen y registran las ondas de radio o radiación electromagnética emitidas por los distintos objetos celestes.
Estas ondas de radio, al ser procesadas ofrecen un espectro analizable del objeto que las emite. La radioastronomía ha permitido un importante incremento del conocimiento astronómico, particularmente con el descubrimiento de muchas clases de nuevos objetos, incluyendo los púlsares (o magnétares), quásares, las denominadas galaxias activas, radiogalaxias y blázares. Esto es debido a que la radiación electromagnética permite "ver" cosas que no son posibles de detectar en las astronomía óptica. Tales objetos representan algunos de los procesos físicos más extremos y energéticos en el universo.
Este método de observación está en constante desarrollo ya que queda mucho por avanzar en esta tecnología.

¿Qué es la Astronomía Observacional?


Astronomía Observacional

Para ubicarse en el cielo, se agruparon las estrellas que se ven desde la Tierra en constelaciones. Así, continuamente se desarrollan mapas (cilíndricos o cenitales) con su propia nomenclatura astronómica para localizar las estrellas conocidas y agregar los últimos descubrimientos.
Aparte de orientarse en la Tierra a través de las estrellas, la astronomía estudia el movimiento de los objetos en la esfera celeste, para ello se utilizan diversos sistemas de coordenadas astronómicas. Estos toman como referencia parejas de círculos máximos distintos midiendo así determinados ángulos respecto a estos planos fundamentales. Estos sistemas son principalmente:
Sistema altacimutal, u horizontal que toma como referencias el horizonte celeste y el meridiano del lugar.
Sistemas horario y ecuatorial, que tienen de referencia el ecuador celeste, pero el primer sistema adopta como segundo círculo de referencia el meridiano del lugar mientras que el segundo se refiere al círculo horario (círculo que pasa por los polos celestes).
Sistema eclíptico, que se utiliza normalmente para describir el movimiento de los planetas y calcular los eclipses; los círculos de referencia son la eclíptica y el círculo de longitud que pasa por los polos de la eclíptica y el punto γ.

Sistema galáctico, se utiliza en estadística estelar para describir movimientos y posiciones de cuerpos galácticos. Los círculos principales son la intersección del plano ecuatorial galáctico con la esfera celeste y el círculo máximo que pasa por los polos de la Vía Láctea y el ápice del Sol (punto de la esfera celeste donde se dirige el movimiento solar).




La astronomía de posición es la rama más antigua de esta ciencia. Describe el movimiento de los astros, planetas, satélites y fenómenos como los eclipses y tránsitos de los planetas por el disco del Sol. Para estudiar el movimiento de los planetas se introduce el movimiento medio diario que es lo que avanzaría en la órbita cada día suponiendo movimiento uniforme. La astronomía de posición también estudia el movimiento diurno y el movimiento anual del Sol. Son tareas fundamentales de la misma la determinación de la hora y para la navegación el cálculo de las coordenadas geográficas. Para la determinación del tiempo se usa el tiempo de efemérides ó también el tiempo solar medio que está relacionado con el tiempo local. El tiempo local en Greenwich se conoce como Tiempo Universal.
La distancia a la que están los astros de la Tierra en el de universo se mide en unidades astronómicas, años luz o pársecs. Conociendo el movimiento propio de las estrellas, es decir lo que se mueve cada siglo sobre la bóveda celeste se puede predecir la situación aproximada de las estrellas en el futuro y calcular su ubicación en el pasado viendo como evolucionan con el tiempo la forma de las constelaciones.

¿Qué es la astronomía?



La astronomía es la ciencia que se compone del estudio de los cuerpos celestes del universo, incluidos los planetas y sus satélites, los cometas y meteoroides, las estrellas y la materia interestelar, los sistemas de estrellas, gas y polvo llamados galaxias y los cúmulos de galaxias; por lo que estudia sus movimientos y los fenómenos ligados a ellos. Su registro y la investigación de su origen viene a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Santo Tomás de Aquino, Tycho Brahe, Johannes Kepler, Galileo Galilei, han sido algunos de sus cultivadores.
Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente en el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.


miércoles, 24 de octubre de 2012

¿Qué es la radiación de Hawking?


Hasta principios de 1970 se pensaba que los agujeros negros no emitían directamente ningún tipo de materia, y su destino último era seguir creciendo por la acreción de más y más materia. Sin embargo, una consideración de los efectos cuánticos en el horizonte de sucesos de un agujero llevó a Hawking a descubrir un proceso físico por el cual el agujero podría emitir radiación. De acuerdo con el principio de incertidumbre de la mecánica cuántica existe la posibilidad de que en el horizonte se formen pares de partícula-antipartícula de corta duración, dado que la probabilidad de que uno de los elementos del par caiga dentro del agujero de manera irreversible y el otro miembro del par escape, el principio de conservación requiere que el agujero disminuya su masa para compensar la energía que se lleva el par que escapa de los aledaños del horizonte de sucesos. Nótese que en este proceso el par se forma estrictamente en el exterior del agujero negro, por lo que no contradice el hecho de que ninguna partícula material puede abandonar el interior. Sin embargo, sí existe un efecto neto de transferencia de energía del agujero negro a sus aledaños, que es la radiación Hawking, cuya producción no viola ningún principio físico.


Descubrimientos recientes de Agujeros Negros


En 1995 un equipo de investigadores de la UCLA dirigido por Andrea Ghez demostró mediante simulación por ordenadores la posibilidad de la existencia de agujeros negros supermasivos en el núcleo de las galaxias. Tras estos cálculos mediante el sistema de óptica adaptativa se verificó que algo deformaba los rayos de luz emitidos desde el centro de nuestra galaxia (la Vía Láctea). Tal deformación se debe a un invisible agujero negro supermasivo que ha sido denominado Sgr.A (o Sagittarius A). En 2007-2008 se iniciaron una serie de experimentos de interferometría a partir de medidas de radiotelescopios para medir el tamaño del agujero negro supermasivo en el centro de la Vía Láctea, al que se le calcula una masa 4'5 millones de veces mayor que la del Sol y una distancia de 26.000 años luz (unos 255.000 billones de km respecto de la Tierra). El agujero negro supermasivo del centro de nuestra galaxia actualmente sería poco activo ya que ha consumido gran parte de la materia bariónica, que se encuentra en la zona de su inmediato campo gravitatorio y emite grandes cantidades de radiación.



Por su parte, la astrofísica Feryal Özel ha explicado algunas características probables en torno a un agujero negro: cualquier cosa, incluido el espacio vacío, que entre en la fuerza de marea provocada por un agujero negro se aceleraría a extremada velocidad como en un vórtice y todo el tiempo dentro del área de atracción de un agujero negro se dirigiría hacia el mismo agujero negro.
En el presente se considera que, pese a la perspectiva destructiva que se tiene de los agujeros negros, éstos al condensar en torno a sí materia sirven en parte a la constitución de las galaxias y a la formación de nuevas estrellas.
En junio de 2004 astrónomos descubrieron un agujero negro súper masivo, el Q0906+6930, en el centro de una galaxia distante a unos 12.700 millones de años luz. Esta observación indicó una rápida creación de agujeros negros súper masivos en el Universo joven.
La formación de micro agujeros negros en los aceleradores de partículas ha sido informada, pero no confirmada. Por ahora, no hay candidatos observados para ser agujeros negros.

Descripción teórica de un Agujero Negro


Los agujeros negros proceden de un proceso de colapso gravitatorio que fue ampliamente estudiado a mediados de siglo XX por diversos científicos, particularmente Robert Oppenheimer, Roger Penrose y Stephen Hawking entre otros. Hawking en su libro divulgativo de 1988 titulado en español Historia del tiempo: del Big Bang a los agujeros negros repasa algunos de los hechos bien establecidos sobre la formación de agujeros negros.
Dicho proceso comienza posteriormente a la muerte de una gigante roja (estrella de gran masa), llámese muerte a la extinción total de su energía. Tras varios miles de millones de años de vida, la fuerza gravitatoria de dicha estrella comienza a ejercer fuerza sobre sí misma originando una masa concentrada en un pequeño volumen, convirtiéndose en una enana blanca. En este punto dicho proceso puede proseguir hasta el colapso de dicho astro por la auto atracción gravitatoria que termina por convertir a esta enana blanca en un agujero negro. Este proceso acaba por reunir una fuerza de atracción tan fuerte que atrapa hasta la luz en éste.
En palabras más simples, un agujero negro es el resultado final de la acción de la gravedad extrema llevada hasta el límite posible. La misma gravedad que mantiene a la estrella estable, la empieza a comprimir hasta el punto que los átomos comienzan a aplastarse. Los electrones en órbita se acercan cada vez más al núcleo atómico y acaban fusionándose con los protones, formando más neutrones mediante el proceso:




Por lo que este proceso comportaría la emisión de un número elevado de neutrinos. El resultado final, una estrella de neutrones. En este punto, dependiendo de la masa de la estrella, el plasma de neutrones dispara una reacción en cadena irreversible, la gravedad aumenta enormemente al disminuirse la distancia que había originalmente entre los átomos. Las partículas de neutrones implotan, aplastándose más, logrando como resultado un agujero negro, que es una región del espacio-tiempo limitada por el llamado horizonte de sucesos. Los detalles de qué sucede con la materia que cae más allá de este horizonte dentro de un agujero negro no se conocen porque para escalas pequeñas sólo una teoría cuántica de la gravedad podría explicarlos adecuadamente, pero no existe una formulación completamente consistente con dicha teoría.

Historia de un agujero negro


El concepto de un cuerpo tan denso que ni siquiera la luz puede escapar de él, fue descrito en un artículo enviado en 1783 a la Royal Society por un geólogo inglés llamado John Michell. Por aquel entonces la teoría de Newton de gravitación y el concepto de velocidad de escape eran muy conocidas. Michell calculó que un cuerpo con un radio 500 veces el del Sol y la misma densidad, tendría, en su superficie, una velocidad de escape igual a la de la luz y sería invisible. En 1796, el matemático francés Pierre-Simon Laplace explicó en las dos primeras ediciones de su libro Exposition du Systeme du Monde la misma idea aunque, al ganar terreno la idea de que la luz era una onda sin masa, en el siglo XIX fue descartada en ediciones posteriores.
En 1915, Einstein desarrolló la relatividad general y demostró que la luz era influida por la interacción gravitatoria. Unos meses después, Karl Schwarzschild encontró una solución a las ecuaciones de Einstein, donde un cuerpo pesado absorbería la luz. Se sabe ahora que el radio de Schwarzschild es el radio del horizonte de sucesos de un agujero negro que no gira, pero esto no era bien entendido en aquel entonces. El propio Schwarzschild pensó que no era más que una solución matemática, no física. En 1930, Subrahmanyan Chandrasekhar demostró que un cuerpo con una masa crítica, (ahora conocida como límite de Chandrasekhar) y que no emitiese radiación, colapsaría por su propia gravedad porque no había nada que se conociera que pudiera frenarla (para dicha masa la fuerza de atracción gravitatoria sería mayor que la proporcionada por el principio de exclusión de Pauli). Sin embargo, Eddington se opuso a la idea de que la estrella alcanzaría un tamaño nulo, lo que implicaría una singularidad desnuda de materia, y que debería haber algo que inevitablemente pusiera freno al colapso, línea adoptada por la mayoría de los científicos.
En 1939, Robert Oppenheimer predijo que una estrella masiva podría sufrir un colapso gravitatorio y, por tanto, los agujeros negros podrían ser formados en la naturaleza. Esta teoría no fue objeto de mucha atención hasta los años 60 porque, después de la Segunda Guerra Mundial, se tenía más interés en lo que sucedía a escala atómica.
En 1967, Stephen Hawking y Roger Penrose probaron que los agujeros negros son soluciones a las ecuaciones de Einstein y que en determinados casos no se podía impedir que se crease un agujero negro a partir de un colapso. La idea de agujero negro tomó fuerza con los avances científicos y experimentales que llevaron al descubrimiento de los púlsares. Poco después, en 1969, John Wheeler acuñó el término "agujero negro" durante una reunión de cosmólogos en Nueva York, para designar lo que anteriormente se llamó "estrella en colapso gravitatorio completo".


jueves, 18 de octubre de 2012

Los Agujeros Negros


Un agujero negro u hoyo negro es una región finita del espacio en cuyo interior existe una concentración de masa lo suficientemente elevada para generar un campo gravitatorio tal que ninguna partícula material, ni siquiera la luz, puede escapar de ella. Sin embargo, los agujeros negros pueden ser capaces de emitir radiación de rayos X, lo cual fue conjeturado por Stephen Hawking en los años 1970 y demostrado en 1976 con el descubrimiento de Cygnus X-1.3
La gravedad de un agujero negro, o «curvatura del espacio-tiempo», provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es previsto por las ecuaciones de campo de Einstein. El horizonte de sucesos separa la región del agujero negro del resto del universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo los fotones. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking, Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros. Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.

Se conjetura que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.




Composición de Sedna


Sedna tiene una magnitud absoluta banda V —H— de aproximadamente 1,8 y se estima que tiene un albedo de alrededor de 0,32, lo que le otorga un diámetro de aproximadamente 1 000 km. En el momento de su descubrimiento fue el objeto intrínsecamente más brillante que se encontró en el Sistema Solar desde Plutón en 1930. En 2004, los descubridores estimaron el límite máximo de su diámetro en 1 800 km, pero en 2007 este valor fue revisado y reducido a menos de 1 600 km después de ser observado por el telescopio espacial Spitzer. En 2012, las mediciones del Observatorio Espacial Herschel sugirieron que el diámetro de Sedna es de 995 ± 80 km, lo que lo haría más pequeño que Caronte. Como Sedna no tiene lunas conocidas, determinar su masa es imposible en la actualidad sin enviar una sonda espacial. Sin embargo, si además de los cálculos anteriores para su diámetro se toma como referencia la densidad de Plutón de 2,0 g/cm3, el rango de masa estimada es aproximadamente 1 x 1021 kg.n.



Las observaciones de los telescopios SMARTS muestran que en luz visible Sedna es uno de los objetos más rojos del Sistema Solar, casi tan rojo como Marte. Se sugirió que el color rojo oscuro de Sedna se debe a una capa superficial de lodo con hidrocarburos, o tolina, formada a partir de compuestos orgánicos más sencillos tras una larga exposición a la radiación ultravioleta. Su superficie es homogénea en color y espectro, lo cual puede deberse a que Sedna, a diferencia de los objetos más cercanos al Sol, raras veces es impactado por otros cuerpos, lo que expondría las partes brillantes de material congelado fresco, como en Asbolo. Sedna y otros dos objetos muy distantes —2000 OO67 y 2006 SQ372— comparten su color con los objetos clásicos del Cinturón de Kuiper y el centauro Folo, lo que sugiere un origen en una región similar.
Se establecieron límites superiores a la composición de la superficie de Sedna en 60% de metano congelado y un 70% de hielo.32 La presencia de metano también apoya la existencia de tolinas en la superficie de Sedna, ya que son producidas por la irradiación de metano. El espectro de Sedna fue comparado con el de Tritón y se detectaron bandas de absorción débiles pertenecientes a metano y nitrógeno congelados. A partir de estas observaciones, se sugirió el siguiente modelo de la superficie: 24% de tolinas tipo Tritón, 7% de carbono amorfo, un 10% de nitrógeno, 26% de metanol y 33% de metano. La detección de metano y agua congelados se confirmó en 2006 por la fotometría en infrarrojo medio del telescopio espacial Spitzer. La presencia de nitrógeno en la superficie sugiere la posibilidad de que, al menos por un tiempo corto, Sedna pudo poseer una atmósfera. Durante un período de alrededor de doscientos años cerca del perihelio la temperatura máxima de Sedna debió exceder 35,6 K (-237,6 °C), la temperatura de transición entre la fase alfa-sólida de N2 y la fase beta vista en Tritón. A los 38 K, la presión de vapor de N2 sería de 14 microbar (0.000014 atmósferas).35 Sin embargo, su profunda inclinación espectral roja es un indicativo de una alta concentración de materia orgánica en su superficie, y sus bandas débiles de absorción de metano indican que el metano en la superficie de Sedna es antiguo, en lugar de depositarse recientemente. Esto quiere decir que Sedna es demasiado frío para que el metano se evapore de la superficie y luego caiga de nuevo en forma de nieve, como ocurre en Tritón y, probablemente, en Plutón.
Los modelos de calentamiento interno a través de la desintegración radiactiva sugieren que Sedna podría ser capaz de soportar un océano subterráneo de agua líquida.

SEDNA


Sedna es el cuerpo menor del Sistema Solar número 90377; concretamente es un objeto transneptuniano. En 2012 se encuentra aproximadamente tres veces más lejos del Sol que Neptuno. Durante la mayor parte de su órbita está incluso más lejos del Sol, con su afelio estimado en 960 unidades astronómicas (ua) —32 veces la distancia de Neptuno—, por lo que es uno de los objetos más lejanos conocidos del Sistema Solar, que no sean los cometas de período largo. La órbita excepcionalmente larga y elongada de Sedna, que tarda unos 11 400 años en completarse, y su lejano punto de máxima aproximación al Sol, a 76 ua, han dado lugar a mucha especulación en cuanto a su origen.
Fue descubierto el 14 de noviembre de 2003 desde el observatorio de Monte Palomar. El nombre de Sedna proviene de la diosa de la mitología esquimal del mar y de los animales marinos. Hostil a los hombres y dotada de una altura gigantesca, Sedna estaba condenada a vivir en las frías profundidades del océano Ártico.



La espectroscopía reveló que la composición de su superficie es similar a la de otros objetos transneptunianos, siendo en gran medida una mezcla de hielo y tolina con metano y nitrógeno congelados. Su superficie es una de las más rojas en el Sistema Solar. No se conoce bien ni su masa ni su tamaño y la Unión Astronómica Internacional no lo ha reconocido formalmente como un planeta enano, aunque varios astrónomos estiman que lo es.
El Minor Planet Center lo coloca en el disco disperso, un grupo de objetos enviados a órbitas muy alargadas por la influencia gravitacional de Neptuno. Sin embargo, esta clasificación es cuestionada ya que Sedna nunca se acerca lo suficiente a Neptuno como para que pueda afectarle, lo que llevó a algunos astrónomos a concluir que en realidad es el primer miembro conocido de la región interior de la nube de Oort. Otros especulan con que podría haber sido empujado a su órbita actual por una estrella en tránsito, tal vez del seno del grupo de nacimiento del Sol, o incluso que fuera capturado de otro sistema estelar. Otra hipótesis sugiere que su órbita puede ser evidencia de otro planeta más allá de la órbita de Neptuno. El astrónomo Michael E. Brown —co-descubridor de Sedna y de los planetas enanos Eris, Haumea y Makemake— cree que es el objeto transneptuniano más importante encontrado hasta la fecha, pues el estudio de su inusual órbita puede aportar información valiosa acerca del origen y la evolución temprana del sistema solar.

Los agujeros Negros


Un agujero negro u hoyo negro es una región finita del espacio en cuyo interior existe una concentración de masa lo suficientemente elevada para generar un campo gravitatorio tal que ninguna partícula material, ni siquiera la luz, puede escapar de ella. Sin embargo, los agujeros negros pueden ser capaces de emitir radiación de rayos X, lo cual fue conjeturado por Stephen Hawking en los años 1970 y demostrado en 1976 con el descubrimiento de Cygnus X-1.3



La gravedad de un agujero negro, o «curvatura del espacio-tiempo», provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es previsto por las ecuaciones de campo de Einstein. El horizonte de sucesos separa la región del agujero negro del resto del universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo los fotones. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking, Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros. Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.
Se conjetura que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.

sábado, 13 de octubre de 2012

Atmósfera de Plutón


Plutón posee una atmósfera extremadamente tenue, formada por nitrógeno, metano y monóxido de carbono, que se congela y colapsa sobre su superficie a medida que el planeta se aleja del Sol. Es esta evaporación y posterior congelamiento lo que causó las variaciones en el albedo del planeta, detectadas por medio de fotómetros fotoeléctricos en la década de 1950 (Kuiper y otros). A medida que el planeta se aproximó, los cambios se fueron haciendo menores, disminuyendo cuando se encontró en el perihelio orbital (1989). Se espera que estos cambios de albedo se repitan, pero a la inversa, a medida que el planeta se aleje del Sol rumbo a su afelio. Generalmente, se podría decir que la función de su atmósfera sería proteger la superficie, pero en este caso la atmósfera de Plutón sólo le sirve para evitar impactos de pequeños meteoros.


PLUTON


En astronomía, Plutón, renombrado oficialmente (134340) Plutón, es un planeta enano del Sistema Solar, situado a continuación de la órbita de Neptuno. En la Asamblea General de la Unión Astronómica Internacional (UAI) celebrada en Praga el 24 de agosto de 2006 se creó una nueva categoría llamada plutoide, en la que se incluye a Plutón. Es también el prototipo de una categoría de objetos transneptunianos denominada plutinos. Posee una órbita excéntrica y altamente inclinada con respecto a la eclíptica, que recorre acercándose en su perihelio hasta el interior de la órbita de Neptuno. Plutón posee cinco satélites: Caronte, Nix, Hidra, P4 y el recientemente descubierto S/2012 (134340) 1, o P5.2 3 Estos son cuerpos celestes que comparten la misma categoría. Hasta el momento no ha sido visitado por ninguna sonda espacial, aunque se espera que la misión New Horizons de la NASA lo sobrevuele en 2015.



Plutón fue descubierto el 18 de febrero de 1930 por el astrónomo estadounidense Clyde William Tombaugh (1906-1997) desde el Observatorio Lowell en Flagstaff, Arizona, y fue considerado el noveno y más pequeño planeta del Sistema Solar por la Unión Astronómica Internacional y por la opinión pública desde entonces hasta 2006, aunque su pertenencia al grupo de planetas del Sistema Solar fue siempre objeto de controversia entre los astrónomos. Tras un intenso debate, la UAI decidió el 24 de agosto de 2006, por unanimidad, reclasificar Plutón como planeta enano, requiriendo que un planeta debe tener Dominancia orbital. Se propuso su clasificación como planeta en el borrador de resolución, pero desapareció de la resolución final, aprobada por la Asamblea General de la UAI. Desde el 7 de septiembre de 2006 tiene el número 134340, otorgado por el Minor Planet Center.
Su gran distancia al Sol y a la Tierra, unida a su reducido tamaño, impide que brille por debajo de la magnitud 13,8 en sus mejores momentos (perihelio orbital y oposición), por lo cual sólo puede ser apreciado con telescopios a partir de los 200 mm de abertura, fotográficamente o con cámara CCD. Incluso en sus mejores momentos aparece como astro puntual de aspecto estelar, amarillento, sin rasgos distintivos (diámetro aparente inferior a 0,1 segundos de arco).
Fue considerado hasta 2006 el noveno planeta del Sistema Solar. Pero más tarde se clasificó a Plutón como planeta enano. Incluso, durante muchos años existió la creencia de que Plutón era un satélite de Neptuno que se desatelizó por el hecho de alcanzar una segunda velocidad cósmica, mas en los años 70 esta teoría fue rechazada quedando sólo como un mito.

Composición de Neptuno


La estructura interna de Neptuno se parece a la de Urano: un núcleo rocoso cubierto por una costra helada, oculto bajo una atmósfera gruesa y espesa. Los dos tercios interiores de Neptuno se componen de una mezcla de roca fundida, agua, amoníaco líquido y metano. El tercio exterior es una mezcla de gas caliente compuesto de hidrógeno, helio, agua y metano.
Al igual que Urano y a diferencia de Júpiter y de Saturno, la composición de la estructura interna de Neptuno se cree que está formada por capas distintas. La capa superior está formada por nubes de hidrógeno, helio y metano, que se transforman de gas en hielo a medida que aumenta la profundidad. El manto rodea un núcleo compacto de roca y hielo.
Este manto que rodea al núcleo rocoso de Neptuno, es una región extremadamente densa y caliente, se cree que en su interior pueden llegar a alcanzarse temperaturas de 1.700 a 4.700 ºC. Se trata de un fluido de gran conductividad eléctrica es una especie de océano de agua y amoníaco.
A 7.000 km de profundidad, las condiciones generan la descomposición del metano en cristales de diamante que se precipitan en dirección al núcleo.
El campo magnético de Neptuno, como el de Urano, está bastante inclinado, más de 50 grados respecto al eje de rotación y desplazado al menos 0,55 radios (unos 13.500 km) del centro físico. Comparando los campos magnéticos de los planetas, los investigadores piensan que la extrema orientación podría ser característica de los flujos en el interior del planeta y no el resultado de la inclinación del propio planeta o de cualquier posible inversión de los campos en ambos planetas.
Al orbitar tan lejos del sol, Neptuno recibe muy poco calor. Su temperatura en la superficie es de -218 °C (55 K). Sin embargo, el planeta parece tener una fuente interna de calor. Se piensa que puede ser un remanente del calor producido por la concreción de materia durante la creación del mismo, que ahora irradia calor lentamente hacia el espacio. Esta fuente de calor interno produce potentísimos sistemas climáticos en torno al planeta, como la Gran Mancha Oscura que la sonda Voyager 2 descubrió a su paso por el sistema de Neptuno en 1989.
Otra de las teorías apunta a que en las profundidades de Neptuno se dan las condiciones idóneas para que los átomos de carbono se combinen en cristales, liberando calor en el proceso. Esta hipótesis plantea pues la posibilidad de que en Neptuno "lluevan" literalmente los diamantes.
El color de Neptuno difiere del de Urano debido a la cantidad de helio contenida en su atmósfera, que es ligeramente mayor. Debido a esto, Neptuno absorbe más luz roja del Sol que su planeta vecino, por tanto refleja un azul mucho más intenso.
La atmósfera de Neptuno tiene una estructura de bandas similar a la encontrada en los otros gigantes gaseosos. En este planeta se producen fenómenos como huracanes gigantes, con un diámetro igual al de la Tierra, y otras formaciones de nubes, incluyendo algunos extensos, y muy bellos cirros, encima (50 km) de las nubes principales. De este modo Neptuno tiene un sistema de nubes muy activo, posiblemente más activo que el de Júpiter. La velocidad del viento en la atmósfera de Neptuno, es de hasta 2.000 km/h, siendo la mayor del sistema solar y se cree que se alimentan del flujo de calor interno.


NEPTUNO


Neptuno es el octavo planeta en distancia respecto al Sol y el más lejano del Sistema Solar. Forma parte de los denominados planetas exteriores o gigantes gaseosos, y es el primero que fue descubierto gracias a predicciones matemáticas. Su nombre fue puesto en honor al dios romano del mar —Neptuno—, y es el cuarto planeta en diámetro y el tercero más grande en masa. Su masa es diecisiete veces la de la Tierra y ligeramente más masivo que su planeta «gemelo» Urano, que tiene quince masas terrestres y no es tan denso.12 En promedio, Neptuno orbita el Sol a una distancia de 30,1 ua. Su símbolo astronómico es , una versión estilizada del tridente del dios Neptuno.



Tras el descubrimiento de Urano, se observó que las órbitas de Urano, Saturno y Júpiter no se comportaban tal como predecían las leyes de Kepler y de Newton. Adams y Le Verrier, de forma independiente, calcularon la posición de un hipotético planeta, Neptuno, que finalmente fue encontrado por Galle, el 23 de septiembre de 1846, a menos de un grado de la posición calculada por Le Verrier. Más tarde se advirtió que Galileo ya había observado Neptuno en 1611, pero lo había confundido con una estrella.
Neptuno es un planeta dinámico, con manchas que recuerdan las tempestades de Júpiter. La más grande, la Gran Mancha Oscura, tenía un tamaño similar al de la Tierra, pero en 1994 desapareció y se ha formado otra. Los vientos más fuertes de cualquier planeta del Sistema Solar se encuentran en Neptuno.
Neptuno es un planeta azulado muy similar a Urano, es ligeramente más pequeño que éste, pero más denso.

viernes, 5 de octubre de 2012

Composición de Urano


La masa de Urano es 14,5 veces la de la Tierra haciéndolo el menos masivo de los planetas gigantes, mientras que su densidad, 1,27 g/cm³, lo hace el segundo menos denso entre ellos, por detrás de Saturno. Aunque tiene un diámetro ligeramente mayor que el de Neptuno (unas cuatro veces el de la Tierra), tiene menos masa. Estos valores indican que está compuesto principalmente de diversos tipos de «hielos», como agua, amoníaco y metano. La masa total de hielo en el interior de Urano no se conoce con precisión, ya que salen valores diferentes según el modelo, sin embargo, debe ser de entre 9,3 y 13,5 masas terrestres. El hidrógeno y el helio constituyen sólo una pequeña parte del total, entre 0,5 y 1,5 masas terrestres. El resto de la masa (0,5 a 3,7 masas terrestres) corresponde a material rocoso.
El modelo generalizado de la estructura de Urano consiste en un núcleo compuesto de roca con una masa relativamente pequeña, un manto de hielos, y una atmósfera formada por hidrógeno y helio, que puede representar hasta un 15% de la masa planetaria. El núcleo es relativamente pequeño, con una masa de sólo 0,55 masas terrestres y un radio de menos del 20 por ciento del total de Urano, el manto forma la mayor parte del planeta, con unas 13,4 masas terrestres, mientras que la atmósfera superior es relativamente tenue, pesa alrededor de 0,5 masas terrestres y forma el 20 por ciento final del radio de Urano. La densidad del núcleo de Urano es alrededor de 9 g/cm3, con una presión en el centro de 8 millones de bares (800 GPa) y una temperatura de unos 5000 K.56 57 El manto helado, de hecho, no es compuesto de hielo en el sentido convencional sino que es un fluido caliente y denso que consiste de agua, amoníaco y otros volátiles. Este fluido, que tiene una conductividad eléctrica elevada, se llama a veces océano de agua-amoniaco. La composición de Urano y Neptuno es muy diferente a la de Júpiter y Saturno, con hielo predominante por encima de los gases. Esto justifica que se clasifiquen por separado como gigantes de hielo.
Mientras que el modelo descrito antes es más o menos estándar, no es el único, otros modelos también concuerdan con las observaciones. Por ejemplo, si hubiera cantidades sustanciales de hidrógeno y material rocoso mezcladas en el manto helado, la masa total de hielos en el interior sería menor, y, por tanto, la masa total de rocas e hidrógeno sería mayor. Los datos disponibles en la actualidad no permiten que la ciencia determine qué modelo es el correcto.56 La estructura interior fluida de Urano significa que no tiene superficie sólida. La atmósfera gaseosa hace una transición gradual hacia las capas líquidas internas. Sin embargo, por conveniencia, se describe un esferoide oblato de revolución, donde la presión es de 1 bar (100 kPa), y se designa como «superficie». Tiene un radio ecuatorial y polar de 25 559 ± 4 y 24 973 ± 20 km, respectivamente. Esta superficie se considerará como punto cero de altitud en este artículo.



URANO


Urano es el séptimo planeta del Sistema Solar, el tercero en cuanto a mayor tamaño, y el cuarto más masivo. Se llama en honor de la divinidad griega del cielo Urano el padre de Cronos (Saturno) y el abuelo de Zeus (Júpiter). Aunque es detectable a simple vista en el cielo nocturno, no fue catalogado como planeta por los astrónomos de la antigüedad debido a su escasa luminosidad y a la lentitud de su órbita.16 Sir William Herschel anunció su descubrimiento el 13 de marzo de 1781, ampliando las fronteras conocidas del Sistema Solar hasta entonces por primera vez en la historia moderna. Urano es también el primer planeta descubierto por medio de un telescopio.
Urano es similar en composición a Neptuno, y los dos tienen una composición diferente de los otros dos gigantes gaseosos (Júpiter y Saturno). Por ello, los astrónomos a veces los clasifican en una categoría diferente, los gigantes helados. La atmósfera de Urano, aunque es similar a la de Júpiter y Saturno por estar compuesta principalmente de hidrógeno y helio, contiene una proporción superior tanto de «hielos» como de agua, amoníaco y metano, junto con trazas de hidrocarburos. Posee la atmósfera planetaria más fría del Sistema Solar, con una temperatura mínima de 49 K (-224 °C). Asimismo, tiene una estructura de nubes muy compleja, acomodada por niveles, donde se cree que las nubes más bajas están compuestas de agua y las más altas de metano. En contraste, el interior de Urano se encuentra compuesto principalmente de hielo y roca.



Como los otros planetas gigantes, Urano tiene un sistema de anillos, una magnetosfera, y satélites numerosos. El sistema de Urano tiene una configuración única respecto a los otros planetas puesto que su eje de rotación está muy tumbado, casi hasta su plan de revolución alrededor del Sol. Por lo tanto, sus polos norte y sur se encuentran en donde la mayoría de los otros planetas tienen el ecuador. Vistos desde la Tierra, los anillos de Urano dan el aspecto de que rodean el planeta como una diana, y que los satélites giran a su alrededor como las agujas de un reloj, aunque en 2007 y 2008, los anillos aparecían de lado. En 1986, las imágenes del Voyager 2 mostraron a Urano como un planeta sin ninguna característica especial de luz visible e incluso sin bandas de nubes o tormentas asociadas con los otros gigantes. Sin embargo, los observadores terrestres han visto señales de cambios de estación y un aumento de la actividad meteorológica en los últimos años a medida que Urano se acerca a su equinoccio. Las velocidades del viento en Urano pueden llegar o incluso sobrepasar los 250 metros por segundo (900 km/h).

Los anillos de Saturno


La característica más notable de Saturno son sus anillos, que dejaron muy perplejos a los primeros observadores, incluido Galileo. Su telescopio no era tan potente como para revelar la verdadera naturaleza de lo que observaba y, por error de perspectiva, creyó que se trataba de dos cuerpos independientes que flanqueaban el planeta. Pocos años después, Saturno presentaba los anillos de perfil, y Galileo quedó muy sorprendido por la brusca desaparición de los dos hipotéticos compañeros del planeta. Por fin, la existencia del sistema de anillos fue determinada por Christiaan Huygens en 1659, con la ayuda de un telescopio más potente.
Los anillos de Saturno se extienden en el plano ecuatorial del planeta desde los 6630 km a los 120 700 km por encima del ecuador de Saturno y están compuestos de partículas con abundante agua helada. El tamaño de cada una de las partículas varía desde partículas microscópicas de polvo hasta rocas de unos pocos metros de tamaño. El elevado albedo de los anillos muestra que éstos son relativamente modernos en la historia del Sistema Solar. En un principio se creía que los anillos de Saturno eran inestables a lo largo de períodos de decenas de millones de años, otro indicio de su origen reciente, pero los datos enviados por la sonda Cassini sugieren que son mucho más antiguos de lo que se pensaba en un principio. Los anillos de Saturno poseen una dinámica orbital muy compleja presentando ondas de densidad, e interacciones con los satélites de Saturno (especialmente con los denominados satélites pastores). Al estar en el interior del límite de Roche, los anillos no pueden evolucionar hacia la formación de un cuerpo mayor.
Los anillos se distribuyen en zonas de mayor y menor densidad de material existiendo claras divisiones entre estas regiones. Los anillos principales son los llamados anillos A y B, separados entre sí por la división de Cassini. En la región interior al anillo B se distinguen otro anillo más tenue aunque extenso: C y otro anillo tenue y fino: D. En el exterior se puede distinguir un anillo delgado y débil denominado anillo F. El tenue anillo E se extiende desde Mimas hasta Rea y alcanza su mayor densidad a la distancia de Encelado, el cual se piensa lo provee de partículas, debido a las emisiones de unos géiseres que se encuentran en su polo sur.
Hasta los años 1980 la estructura de los anillos se explicaba por medio de las fuerzas gravitacionales ejercidas por los satélites cercanos. Las sondas Voyager encontraron sin embargo estructuras radiales oscuras en el anillo B llamadas cuñas radiales (en inglés: spokes) que no podían ser explicadas de esta manera ya que su rotación alrededor de los anillos no era consistente con la mecánica orbital. Se considera que estas estructuras oscuras interactúan con el campo magnético del planeta, ya que su rotación sobre los anillos seguía la misma velocidad que la magnetosfera de Saturno. Sin embargo el mecanismo preciso de su formación todavía se desconoce. Es posible que las cuñas aparezcan y desaparezcan estacionalmente.



El 17 de agosto de 2005 los instrumentos a bordo de la nave Cassini desvelaron que existe algo similar a una atmósfera alrededor del sistema de anillos, compuesta principalmente de oxígeno molecular. Los datos obtenidos han demostrado que la atmósfera en el sistema de anillos de Saturno es muy parecida a la de las lunas de Júpiter, Europa y Ganímedes.
El 19 de septiembre de 2006 la NASA anunció el descubrimiento de un nuevo anillo en Saturno, por la nave espacial Cassini durante una ocultación solar, cuando el Sol pasa directamente detrás de Saturno y Cassini viaja en la sombra dejada por Saturno con lo que los anillos tienen una iluminación brillante. Habitualmente una ocultación solar puede durar una hora pero el 17 de septiembre de 2006 duró 12 horas, siendo la más larga de la misión Cassini. La ocultación solar dio la oportunidad a Cassini de realizar un mapa de la presencia de partículas microscópicas que no son visibles normalmente, en el sistema de anillos.
El nuevo anillo, apenas perceptible, está entre el Anillo F y el Anillo G. Esta ubicación coincide con las órbitas de las lunas de Saturno Jano y Epimeteo, dos satélites coorbitales de Saturno cuyas distancias al centro de Saturno se diferencian menos que el tamaño de dichos satélites, por lo que describen una extraña danza que los lleva a intercambiar sus órbitas. Los investigadores de la NASA aseguraron que el impacto de meteoros en esas lunas ha hecho que otras partículas se unan al anillo.
Las cámaras a bordo de la nave Cassini captaron imágenes de un material helado que se extiende decenas de miles de kilómetros desde Encélado, otra confirmación de que la luna está lanzando material que podría formar el E. El satélite Encélado pudo ser visto a través del anillo E con sus chorros saliendo de su superficie semejando "dedos", dirigidos al anillo en cuestión. Estos chorros están compuestos de partículas heladas muy delgadas, que son expulsadas por los géiseres del Polo Sur de Encelado y entran en el anillo E.
«Tanto el nuevo anillo como las estructuras inesperadas del E nos dan una importante pista de cómo las lunas pueden lanzar pequeñas partículas y esculpir sus propios ambientes locales», dijo Matt Hedman, un investigador asociado a la Universidad Cornell en Ithaca, Nueva York.
La NASA también anunció el 24 de octubre de 2007 el descubrimiento de un cinturón de microlunas en el borde exterior del anillo A y cuyo tamaño varía desde el de un camión pequeño al de un estadio, probablemente causado por la destrucción de una luna pequeña.
En octubre de 2009 el telescopio espacial Spitzer descubre un nuevo y enorme anillo alrededor de Saturno, mucho más grande de los que le rodean. Después de muchos siglos, éste había pasado desapercibido hasta ahora, porque está tan enrarecido que resulta casi invisible. Este nuevo cinturón se despliega en el confín del sistema saturniano. Su masa comienza a unos seis millones de kilómetros del planeta y se extiende hasta alcanzar 13 millones de kilómetros de diámetro. Uno de los más lejanos satélites de Saturno, Febe, orbita dentro del nuevo anillo, y probablemente sea la fuente de su composición.